Abstract
The combinatorial optimization literature contains a multitude of polynomially solvable special cases of the traveling salesman problem (TSP) which result from imposing certain combinatorial restrictions on the underlying distance matrices. Many of these special cases have the form of so-called four-point conditions: inequalities that involve the distances between four arbitrary cities.In this paper we classify all possible four-point conditions for the TSP with respect to computational complexity, and we determine for each of them whether the resulting special case of the TSP can be solved in polynomial time or whether it remains NP-hard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.