Abstract

BackgroundPlant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from Heliophila coronopifolia, a native South African Brassicaceae species.ResultsFour defensin genes (Hc-AFP1-4) were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from Arabidopsis and Raphanus. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC50 values of 5-20 μg ml-1 against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against Botrytis cinerea was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen Fusarium solani, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. Hc-AFP1 and 3 expressed in mature leaves, stems and flowers, whereas Hc-AFP2 and 4 exclusively expressed in seedpods and seeds.ConclusionsTwo novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant H. coronopifolia. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.

Highlights

  • Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds

  • These defence systems consists of an array of both chemical and biochemical substances that protect the plant against colonization and subsequent spread of disease and can broadly be divided into the innate and active defence responses [7,9,10,11,12,13]

  • Isolation and in silico characterization of the Hc-AFP encoding sequences PCR-based isolation of cDNA from H. coronopifolia tissues allowed for the isolation of four putative defensin sequences ranging between 426 bp and 468 bp, containing open reading frames of 240 and 243 bp, respectively

Read more

Summary

Introduction

Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides have other activities that are important for agricultural applications as well as the medical sector. Plants have developed complex defence systems to protect them against a multitude of plant pathogens [1,2,3,4,5,6,7,8] These defence systems consists of an array of both chemical and biochemical substances that protect the plant against colonization and subsequent spread of disease and can broadly be divided into the innate and active defence responses [7,9,10,11,12,13]. Plant defensins [10,14,15,16,17,18,19,20,21], thionins [22,23,24,25,26,27] and lipid transfer proteins [28,29,30,31,32,33,34] are the best characterized of these nine groups

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.