Abstract
Guessing effects frequently occur in testing data in educational or psychological applications. Different item response models have been proposed to handle guessing effects in dichotomous test items. However, it has been pointed out in the literature that the often employed three-parameter logistic model poses implausible assumptions regarding the guessing process. The four-parameter guessing model has been proposed as an alternative to circumvent these conceptual issues. In this article, the four-parameter guessing model is compared with alternative item response models for handling guessing effects through a simulation study and an empirical example. It turns out that model selection for item response models should be rather based on the AIC than the BIC. However, the RMSD item fit statistic used with typical cutoff values was found to be ineffective in detecting misspecified item response models. Furthermore, sufficiently large sample sizes are required for sufficiently precise item parameter estimation. Moreover, it is argued that the criterion of the statistical model fit should not be the sole criterion of model choice. The item response model used in operational practice should be valid with respect to the meaning of the ability variable and the underlying model assumptions. In this sense, the four-parameter guessing model could be the model of choice in educational large-scale assessment studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.