Abstract

Variation trends of dimensionless power density (PD) with a compression ratio and thermal efficiency (TE) are discussed according to the irreversible Atkinson cycle (AC) model established in previous literature. Then, for the fixed cycle temperature ratio, the maximum specific volume ratios, the maximum pressure ratios, and the TEs corresponding to the maximum power output (PO) and the maximum PD are compared. Finally, multi-objective optimization (MOO) of cycle performance with dimensionless PO, TE, dimensionless PD, and dimensionless ecological function (EF) as the optimization objectives and compression ratio as the optimization variable are performed by applying the non-dominated sorting genetic algorithm-II (NSGA-II). The results show that there is an optimal compression ratio which will maximize the dimensionless PD. The relation curve of the dimensionless PD and compression ratio is a parabolic-like one, and the dimensionless PD and TE is a loop-shaped one. The AC engine has smaller size and higher TE under the maximum PD condition than those of under the maximum PO condition. With the increase of TE, the dimensionless PO will decrease, the dimensionless PD will increase, and the dimensionless EF will first increase and then decrease. There is no positive ideal point in Pareto frontier. The optimal solutions by using three decision-making methods are compared. This paper analyzes the performance of the PD of the AC with three losses, and performs MOO of dimensionless PO, TE, dimensionless PD, and dimensionless EF. The new conclusions obtained have theoretical guideline value for the optimal design of actual Atkinson heat engine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.