Abstract
This study aims to aid understanding of Model Predictive Control (MPC) alternatives through comparing most interesting MPC implementations. This comparison will be performed intrinsically and illustrated using the four-tank benchmark, widely studied by academics taking care of industrial perspectives. Although MPC provides advanced control solutions for a wide class of dynamical systems, challenges arise in managing the compromise between accuracy, computational cost and resilience, depending on the type of model used. In this study, linear, linear time-varying and non-linear MPCs are compared to MPC that uses a neural network based predictive model identified from data. The tuning and implementation methods considered are discussed, and accurate simulation results provided and analyzed. Precisely, the performance of each method (linear, linear time-varying, non-linear MPC) are compared to the neural MPC. Pros and cons of neural MPC are highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.