Abstract

AbstractIn order to explore the influences of (de‐)protonation of the imidazole ring on the structural diversity of the resulting complexes, the imidazole‐based ligands 4, 5‐diphenylimidazole (Hdpi) and 1H‐phenanthro[9, 10‐d]imidazole (Hpi) were utilized as bulky building blocks to construct four complexes by solvothermal reactions, i.e. [Ag(Hdpi)2](NO3)·(H2O) (1), [Cu(dpi)]∞ (2), [Cu(Hpi)(NO3)]∞ (3), and [(H2pi)(NO3)]·H2O (4). In complex 1, two Hdpi ligands adopt a monodentate pattern and coordinate with one AgI ion to form a mononuclear unit, which is further connected by hydrogen bonds into a 1D supramolecular helix. The deprotonated dpi ligand of 2 acts in bidentate mode, and bridges CuI ions to afford a 1D chain. In 3, the NO3– ion, acts as a monodentate bridging ligand and joins CuI ions to generate a 1D chain. The Hpi ligand employs a monodentate mode to bond with CuI ions of the 1D chain. 4 is protonated and two H2pi nitrogen atoms are free of coordination. Interestingly, hydrogen bonds among the NO3– ion, the H2pi ligand, and the water molecule yield a macro ring R44(14). The resulting structural diversity reveals that the (de‐)protonation of imidazole ring directly steers the coordination number of ligand, and thus causes a significant effect on the structure, especially the dimensionality. Furthermore, the solid‐state fluorescence properties of the free ligands and compounds 1–4 were studied at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.