Abstract
Meristemoids, which are stomatal precursor cells, exhibit self-renewal and differentiation abilities. However, the only known core factor associated with meristemoid division termination and fate transition is the heterodimer formed by the basic helix-loop-helix proteins MUTE and SCREAMs (SCRMs). FOUR LIPS (FLP), a well-known transcription factor that restricts guard mother cell (GMC) division, is a direct target of MUTE. Whether FLP involves in meristemoid differentiation is unknown. Through sensitized genetic screening of flp-1, we identified a mute-like (mutl) mutant with arrested meristemoids. The mutant carried a novel allele of the MUTE locus, i.e., mute-4. Intriguingly, mute-4 is a hypomorphic allele that exhibits wild-type appearance with slightly delayed meristemoid-to-GMC transition, whereas it renders an unexpected mutl epidermis with most meristemoids arrested and very few stomata when combined with flp (flp mute-4), suggesting that FLP is a positive regulator during this transition process. Consistently, the expression of FLP increased during GMC commitment, and the number of cells at this stage was markedly increased in flp. flp scrm double mutants produced arrested meristemoids similar to mute, and FLP was able to interact physically with SCRM. Taken together, our results demonstrate that FLP functions together with MUTE and SCRMs to direct meristemoid-to-GMC fate transition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.