Abstract

We present next-to-leading order perturbative QCD predictions for four-jet-like event-shape observables in hadronic Higgs decays. To this end, we take into account two Higgs-decay categories: involving either the Yukawa-induced decay to a \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext{b}}\\overline{{\ ext{b}} }$$\\end{document} pair or the loop-induced decay to two gluons via an effective Higgs-gluon-gluon coupling. We present results for distributions related to the event-shape variables thrust minor, light-hemisphere mass, narrow jet broadening, D-parameter, and Durham four-to-three-jet transition variable. For each of these observables we study the impact of higher-order corrections and compare their size and shape in the two Higgs-decay categories. We find large NLO corrections with a visible shape difference between the two decay modes, leading to a significant shift of the peak in distributions related to the H → gg decay mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call