Abstract

The usage of non-noble-metal nanomaterials for nanoprobes or functional modules is still a big challenge because of their poor stability, functionality, and surface plasmon resonance property. In this work, copper ion, mercaptosuccinic acid, and nanocrystalline cellulose are combined for facile one-step synthesis and self-assembly of ultrasmall copper nanoparticles to produce supercolloidal particles (NCC@MSA-Cu SPs). Cu SPs show advanced multifunctionality for fast point-of-care tests (POCTs) of four metal ions (Hg2+, Pb2+, Ag+, and Zr4+). These selective recognitions integrate four different chemical reaction mechanisms (ion etching, core-shell deposition, templated synthesis, and precipitation) to produce four distinct readout signals. The multisignal mode-guided multianalyte sensing strategy can effectively avoid interference that affects single signal mode-based sensing. Benefiting from the creative multi-input and multireadout abilities, the visual multicoding logic gates of OR, NOR, AND, and INHIBIT are built based on optical responses of Cu SPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call