Abstract

Acute exposure to hypoxia increases postural sway, but the underlying neurophysiological factors are unclear. Golgi tendon organs (GTOs), located within the musculotendinous junction (MTJ), provide inhibitory signals to plantar flexor muscles that are important for balance control; however, it is uncertain if GTO function is influenced by hypoxia. The aim of this study was to determine how normobaric hypoxia influences lower limb tendon-evoked inhibitory reflexes during upright stance. We hypothesized that tendon-evoked reflex area and duration would decrease during hypoxia, indicating less inhibition of postural muscles compared with normoxia. At baseline (BL; 0.21 fraction of inspired oxygen, FIO2) and at ∼2 (H2) and 4 (H4) h of normobaric hypoxia (0.11 FIO2) in a normobaric hypoxic chamber, 16 healthy participants received electrical musculotendinous stimulation (MTstim) to the MTJ of the left Achilles tendon. The MTstim was delivered as two sets of 50 stimuli while the participant stood on a force plate with their feet together. Tendon-evoked inhibitory reflexes were recorded from the surface electromyogram of the ipsilateral medial gastrocnemius, and center of pressure (CoP) variables were recorded from the force plate. Normobaric hypoxia increased CoP velocity (P ≤ 0.002) but not CoP standard deviation (P ≥ 0.12). Compared with BL, normobaric hypoxia reduced tendon-evoked inhibitory reflex area by 45% at H2 and 53% at H4 (P ≤ 0.002). In contrast, reflex duration was unchanged during hypoxia. The reduced inhibitory feedback from the GTO pathway could likely play a role in the increased postural sway observed during acute exposure to hypoxia.NEW & NOTEWORTHY The Ib pathway arising from the Golgi tendon organ provides inhibitory signals onto motor neuron pools that modifies force and, hence, postural control. Although hypoxia influences standing balance (increases sway), the underlying mechanisms have yet to be unraveled. Our study identified that tendon-evoked inhibition onto a plantar flexor motoneuron pool is reduced by acute exposure to normobaric hypoxia. This reduction of inhibition may contribute to the hypoxia-related increase in postural sway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.