Abstract

We consider a reduced dynamics for the first four fluid moments of the one-dimensional Vlasov–Poisson equation, namely, fluid density, fluid velocity, pressure, and heat flux. This dynamics depends on an equation of state to close the system. This equation of state (closure) connects the fifth-order moment—related to the kurtosis in velocity of the Vlasov distribution—with the first four moments. By solving the Jacobi identity, we derive an equation of state, which ensures that the resulting reduced fluid model is Hamiltonian. We show that this Hamiltonian closure allows symmetric homogeneous equilibria of the reduced fluid model to be stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call