Abstract

The use of Four-Dimensional variational (4D-Var) data assimilation technology in the context of sea dynamics problems, with a sensitivity analysis of model results to observation errors, is presented. The technology is applied to a numerical model of ocean circulation developed at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), with the use of the splitting method and complemented by 4D-Var data assimilation with covariance matrices of background and observation errors. The variational data assimilation involves iterative procedures to solve inverse problems so as to correct sea surface heat fluxes for the model under consideration. An algorithm is formulated to study the sensitivity of the model outputs, considered as output functions after assimilation, to the observation errors. The algorithm reveals the regions where the output function gradient is the largest for the average sea surface temperature (SST) in a selected area, obtained by assimilation. In the numerical experiments, a 4D variational problem of SST assimilation for the Baltic Sea area is solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.