Abstract

We demonstrate that AI can learn atomistic systems in the four-dimensional (4D) spacetime. For this, we introduce the 4D-spacetime GICnet model, which for the given initial conditions (nuclear positions and velocities at time zero) can predict nuclear positions and velocities as a continuous function of time up to the distant future. Such models of molecules can be unrolled in the time dimension to yield long-time high-resolution molecular dynamics trajectories with high efficiency and accuracy. 4D-spacetime models can make predictions for different times in any order and do not need a stepwise evaluation of forces and integration of the equations of motions at discretized time steps, which is a major advance over traditional, cost-inefficient molecular dynamics. These models can be used to speed up dynamics, simulate vibrational spectra, and obtain deeper insight into nuclear motions, as we demonstrate for a series of organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.