Abstract

We classify Einstein metrics on mathbb {R}^4 invariant under a four-dimensional group of isometries including a principal action of the Heisenberg group. We consider metrics which are either Ricci-flat or of negative Ricci curvature. We show that all of the Ricci-flat metrics, including the simplest ones which are hyper-Kähler, are incomplete. By contrast, those of negative Ricci curvature contain precisely two complete examples: the complex hyperbolic metric and a metric of cohomogeneity one known as the one-loop deformed universal hypermultiplet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.