Abstract

The aim of this paper is to classify 4-dimensional Einstein-like manifolds whose Ricci tensor has constant eigenvalues (this being a special kind of curvature homogeneity condition). We give a full classification when the Ricci tensor is of Codazzi type; when the Ricci tensor is cyclic parallel, we classify all such manifolds when not all Ricci curvatures are distinct. In this second case we find a one-parameter family of Riemannian metrics on a Lie groupG as the only possible ones which are irreducible and non-symmetric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.