Abstract

The halophilic archaebacterium, Halobacterium halobium has been found to contain four different b-type cytochromes. The four components were recognized by their potentiometric characteristics in situ in their functional environment in the membrane of H. halobium. Oxidation-reduction midpoint potentials of these four b-type cytochromes were determined to be +261, +160, +30, and −153 mV, respectively. We also demonstrate that the pathway involved in the transport of reducing equivalents from succinate to oxygen proceeds through the b-type cytochromes with oxidation-reduction midpoint potentials of +261 and +161 mV. The cytochrome with oxidation-reduction midpoint potential of −153 mV was not substrate reducible by NADH but was chemically reducible by dithionite. Antimycin inhibits reduction of b-type cytochrome in the succinate pathway, but has no effect on b-type cytochrome reduction when reducing equivalents are provided by NADH. The carbon monoxide difference spectrum of H. halobium membranes shows at least one carbon monoxide-binding b-type cytochrome, indicating a terminal oxidase. A scheme for electron transport in H. halobium involving the b-type cytochromes and terminal oxidases is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call