Abstract
Study regionThis study analyzed lake surface temperature (LST) trends and spatial distribution across 535 predominantly small to medium lakes across the North Slave Region (NSR) of the Northwest Territories (NWT), Canada. Study focusThe NWT is characterized by a vast number of lakes covering a significant portion of its spatial extent. However, there is limited knowledge of how LST responds to climate warming in this region. To address this, LST was analyzed in four distinct periods: open water season (OW), ice cover season (IC), and the transitional months of May (TM) and October (TO). LSTs from 1984 to 2021 were retrieved from a lake-specific satellite-derived LST dataset (North Slave LST). LST trend distribution and relationships were analyzed using the Mann-Kendall test and a multilinear regression model. New hydrological insightsThe analysis revealed an overall increase in LST, with average rates (max) of 0.03 °C/year (0.05 °C/year), 0.03 °C/year (0.06 °C/year), and 0.13 °C/year (0.27 °C/year) for OW, TM, and TO, respectively accross study lakes. A faster rate of change was observed in October compared to other periods. Results indicated significant increases in LST for 411 lakes (77%) during OW, 418 lakes (78%) during TO, and 490 lakes (92%) during TM. The spatial distribution and magnitude of LST change were primarily influenced by geographical than morphometric properties. The analysis demonstrated later freeze-up (0.20 day/year) and earlier break-up (−0.17 day/year) of lake ice across the NSR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.