Abstract

We report a combined experimental-theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac-Kohn-Sham method (mDKS) based on the Dirac-Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.