Abstract

Rising energy costs, decreasing soil depth, and best management practices that require on-farm water retention have led to interest in flood-tolerant bioenergy crops for production in the Everglades Agricultural Area (EAA) of Florida. Information on the effects of high water tables on sugarcane (Saccharum spp. L.) is available; however, little is known about the bioenergy crops elephant grass (Pennisetum purpureum Schumach.), energycane (Saccharum spp. L.), and giant reed (Arundo donax L.). The objective of this study was to evaluate the role of water-table depth on the yields, morphology, physiology, and early season growth of these three bioenergy species in relation to sugarcane. The species were grown in a greenhouse and subjected to three water management strategies, −40 or −16 cm constant water-table depths, and bi-weekly flooding with drainage to −40 cm. The experiment was conducted in plant-cane, first-ratoon, and successive plant-cane crop cycles. Periodic flooding relative to a −40 cm constant water table significantly reduced dry weights and leaf area index and increased aerenchyma development. Averaged among crops, dry weight declined by 32, 49, 37, and 52% while leaf area index (LAI) decreased by 31, 50, 46, and 57% for giant reed, elephant grass, energycane, and sugarcane, respectively, in response to flooding. Aerenchyma proportional area of the stalk increased by 52, 90, and 95% for elephant grass, energycane, and sugarcane, respectively, but aerenchyma in giant reed decreased by 11%. High yields and stalk populations for all water tables were observed in energycane and elephant grass. These two species show potential for bioenergy production in the EAA. Field trials are recommended to confirm production scale yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.