Abstract
Soybean (Glycine max L. [Merr]) plants export nitrogen from the nodules as ureides during symbiotic biological nitrogen fixation. Ureides also play a role as nitrogen storage compounds in the seeds and are broken down in germinating seedlings. In this work we identified four soybean genes encoding allantoinase (E.C. 3.5.2.5), an enzyme involved in both ureide production in nodules and ureide catabolism in leaves and other sink tissues. We examined ureide content, allantoinase enzyme activity and expression of these genes, which we term GmALN1 through GmALN4, in germinating seedlings and in vegetative tissues from 45 day old soybean plants. GmALN1 and GmALN2 transcripts were measured in all tissues, but similar levels of expression of GmALN3 and GmALN4 was only observed in nodules. The soybean allantoinase genes seem to have arisen through tandem gene duplication followed by a whole genome duplication. We looked for evidence of the tandem duplication in common bean (Phaseolus vulgaris L.) and present evidence that it occured sometime in the bean lineage before these two species diverged, but before soybean became a tetraploid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.