Abstract

The first part of this paper is an overview of the theory of approximation of wave equations by Galerkin methods. It treats convergence theory for linear second order evolution equations and includes studies of consistency and eigenvalue approximation. We emphasize differential operators, such as the curl, which have large kernels, and use L2-stable interpolators preserving them. The second part provides a setting for the construction of finite element spaces of differential forms on cellular complexes. Material on homological and tensor algebra as well as differential and discrete geometry is included. Whitney forms, their duals, their high order versions, their tensor products and their hp-versions all fit into this framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.