Abstract

In this chapter we continue to investigate the regularity for weak solutions, but now we address the case of vector-valued solutions where we encounter fundamentally new phenomena when compared to the scalar case. In order to concentrate on the central concepts and ideas, we here restrict ourselves to the model case of quasilinear systems that are linear in the gradient variable. We first give two examples of elliptic systems, which admit a discontinuous or even unbounded weak solution. Then we investigate the optimal regularity of weak solutions in dependency of the “degree” of nonlinearity of the governing vector field. In this regard, we start by discussing the linear theory and establish full regularity estimates. This is quite peculiar and a consequence of the particular structure of the coefficients, since for more general systems, as in the counterexamples, one merely expects partial regularity results, that is, regularity outside of negligible sets. Secondly, we present three different strategies for proving partial \(C^{0,\alpha }\)-regularity results for such systems, where the coefficients may depend also explicitly on the weak solution. More precisely, we explain the main ideas for the blow-up technique, the method of \(\mathcal{A}\)-harmonic approximation, and the indirect approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.