Abstract
This study aims to assess the effectiveness of integrating Segment Anything Model (SAM) and its variant MedSAM into the automated mining, object detection, and segmentation (MODS) methodology for developing robust lung cancer detection and segmentation models without post hoc labeling of training images. In a retrospective analysis, 10,000 chest computed tomography scans from patients with lung cancer were mined. Line measurement annotations were converted to bounding boxes, excluding boxes < 1cm or > 7cm. The You Only Look Once object detection architecture was used for teacher-student learning to label unannotated lesions on the training images. Subsequently, a final tumor detection model was trained and employed with SAM and MedSAM for tumor segmentation. Model performance was assessed on a manually annotated test dataset, with additional evaluations conducted on an external lung cancer dataset before and after detection model fine-tuning. Bootstrap resampling was used to calculate 95% confidence intervals. Data mining yielded 10,789 line annotations, resulting in 5403 training boxes. The baseline detection model achieved an internal F1 score of 0.847, improving to 0.860 after self-labeling. Tumor segmentation using the final detection model attained internal Dice similarity coefficients (DSCs) of 0.842 (SAM) and 0.822 (MedSAM). After fine-tuning, external validation showed an F1 of 0.832 and DSCs of 0.802 (SAM) and 0.804 (MedSAM). Integrating foundational segmentation models into the MODS framework results in high-performing lung cancer detection and segmentation models using only mined clinical data. Both SAM and MedSAM hold promise as foundational segmentation models for radiology images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.