Abstract

For almost a decade, various studies have been carried out to prove the suitability of nano additives in enhancing the geotechnical properties of soil. Yet, this line of research is still in its elementary stage, restricting itself to laboratory tests to determine soil’s index and engineering properties blended with varying dosages of nano additives. In other words, research on practical applications of nano additives for soil stabilization is scarce. The present work attempts to investigate the suitability of three different nanomaterials as a load-bearing stratum for shallow foundations. The nano additives were chosen in such a way that each of them is from a different origin. One of them is nano calcium carbonate (inorganic) whereas the other two are nano-sized varieties of natural biopolymers, namely nano chitosan (crustacean-based) and nano carboxymethyl cellulose (plant-based). A series of laboratory tests were initially conducted to determine the strength of all three nano-additive-treated soils at different dosages, which were investigated for 180 days to ensure their long-term performance. This was followed by a foundation model study on untreated soil and on soil treated with optimal dosages of nano additives. The results were validated using finite element software followed by a parametric study to optimize the depth of soil stabilization. It was observed that all three nano additives exhibited a better performance when the top layer had the optimal dosage and the subsequent layers had a relatively lesser dosage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.