Abstract

Fouling is generally defined as the accumulation and formation of unwanted materials on the surfaces of processing equipment, which can seriously deteriorate the capacity of the surface to transfer heat under the temperature difference conditions for which it was designed. Fouling of heat transfer surfaces is one of the most important problems in heat transfer equipment. Fouling is an extremely complex phenomenon. Fundamentally, fouling may be characterized as a combined, unsteady state, momentum, mass and heat transfer problem with chemical, solubility, corrosion and biological processes may also taking place. It has been described as the major unresolved problem in heat transfer1. According to many [1-3], fouling can occur on any fluid-solid surface and have other adverse effects besides reduction of heat transfer. It has been recognized as a nearly universal problem in design and operation, and it affects the operation of equipment in two ways: Firstly, the fouling layer has a low thermal conductivity. This increases the resistance to heat transfer and reduces the effectiveness of heat exchangers. Secondly, as deposition occurs, the cross sectional area is reduced, which causes an increase in pressure drop across the apparatus. In industry, fouling of heat transfer surfaces has always been a recognized phenomenon, although poorly understood. Fouling of heat transfer surfaces occurs in most chemical and process industries, including oil refineries, pulp and paper manufacturing, polymer and fiber production, desalination, food processing, dairy industries, power generation and energy recovery. By many, fouling is considered the single most unknown factor in the design of heat exchangers. This situation exists despite the wealth of operating experience accumulated over the years and accumulation of the fouling literature. This lake of understanding almost reflects the complex nature of the phenomena by which fouling occurs in industrial equipment. The wide range of the process streams and operating conditions present in industry tends to make most fouling situations unique, thus rendering a general analysis of the problem difficult. In general, the ability to transfer heat efficiently remains a central feature of many industrial processes. As a consequence much attention has been paid to improving the understanding of heat transfer mechanisms and the development of suitable correlations and techniques that may be applied to the design of heat exchangers. On the other hand relatively little consideration has been given to the problem of surface fouling in heat exchangers. The

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call