Abstract

A major cause of refinery energy inefficiency is fouling in preheat trains. This has been a most challenging problem for decades, due to limited fundamental understanding of its causes, deposition mechanisms, deposit composition, and impacts on design/operations. Current heat exchanger design methodologies mostly just allow for fouling, rather than fundamentally preventing it. To address this problem in a systematic way, a large-scale interdisciplinary research project, CROF (crude oil fouling), brought together leading experts from the University of Bath, University of Cambridge, and Imperial College London and, through IHS ESDU, industry. The research, coordinated in eight subprojects blending theory, experiments, and modeling work, tackles fouling issues across all scales, from molecular to the process unit to the overall heat exchanger network, in an integrated way. To make the outcomes of the project relevant and transferable to industry, the research team is working closely with experts from many world leading oil companies. The systematic approach of the CROF project is presented. Individual subprojects are outlined, together with how they work together. Initial results are presented, indicating that a quantum progress can be achieved from such a fundamental, integrated approach. Some preliminary indications with respect to impact on industrial practice are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.