Abstract

Performing an adequate fouling study for the heat exchangers in the convection section of a steam cracker requires reliable data on circumferential tube wall temperature profiles. A hybrid Computational Fluid Dynamics (CFD)-1D convection section model, developed to perform coupled flue gas/process gas side simulations of convection sections, is improved by the implementation of flue gas radiation modeling and extended to include typical tube banks. A complete naphtha cracker convection section is simulated with the improved hybrid CFD-1D model. All tubes show distinct maximum heat fluxes on the tube walls due to the high flue gas velocity. Based on the calculated circumferential heat flux profiles, the maximum heat flux value is calculated to be 1.8 times the average tube heat flux value. As computational costs associated with a hybrid CFD-1D simulation are high, a convective heat flux profile reconstruction scheme is developed. Using the scheme, circumferential heat flux profiles are reconstructed, based on the heat fluxes calculated when performing a fully 1D coupled convection section simulation. The heat flux reconstruction profile scheme enables fast retrieval of circumferential heat flux profiles and, thus, tube wall temperature profiles. Optimization and/or design of a steam cracker convection section becomes less computationally demanding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call