Abstract

In this study, we examined pressure-retarded osmosis (PRO) performance using naturally high temperature NaHCO3-enriched geothermal water (i.e., capturing CO2 waste gas) and geothermal brine. The results showed that increasing draw solution temperature from 20 °C to 60 °C, NaHCO3-enriched geothermal water facilitated improving water flux (Jw) without compromising reverse salt flux (Js), leading to lower Js/Jw ratios compared to NaCl-based solution. With NaHCO3-enriched geothermal water (60 °C) as draw solution, periodically physical cleaning (clean water flushing with/without air sparging, osmotic backwashing) displayed ∼17 % lower permeability recovery ratio (p < 0.05), dissimilar foulant morphology and inorganic compositions compared to chemical cleaning (acid, base, NaClO); while the average permeability levels under both cleaning conditions were comparable (p > 0.05). However, the recovery ratio decreased with extending cleaning cycle, resulting in an almost comparable permeability to that without cleaning after 60-h operation. In addition, the presence of Ca2+ at 5 mM in the NaHCO3-enriched geothermal water (60 °C) led to more significant water flux drop and less reverse flux decrease compared to those with Ca2+ at 0 and 30 mM, possibly due to its dense fouling layer formed by smaller-sized CaCO3 precipitates. When geothermal brine (low or high salinity, pH = 3 or 9.7, 60 °C) was used as draw solution, it was noticed that (1) with low salinity brine, basic pH levels led to higher water fluxes; (2) with high salinity brine, the water flux was impacted by the ionic compositions of draw solutions, instead of pH levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.