Abstract

To further unravel the organic fouling behavior of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes, the adhesion forces of membrane-foulant and foulant-foulant were investigated by atomic force microscopy (AFM) in conjunction with self-made PVDF colloidal probe and foulant-coated colloidal probe, respectively. Fouling experiments with bovine serum albumin, sodium alginate, humic acid, and secondary wastewater effluent organic matter (EfOM) were carried out with PVDF UF membrane. Results showed a positive correlation between the membrane-foulant adhesion force and the flux decline rate and extent in the initial filtration stage, whereas the foulant-foulant interaction force was closely related to the pseudostable flux and the cake layer structure in the later filtration stage. For each type of foulant used, the membrane-foulant adhesion force was much stronger than the foulant-foulant interaction force, and membrane flux decline mainly occurred in the earlier filtration stage indicating that elimination of the membrane-foulant interaction force is important for the control of membrane fouling. Upon considering the foulant-foulant interaction force and the membrane flux recovery rate of fouled membranes, it was evident that the main contributor to physically irreversible fouling is the foulant-foulant interaction force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call