Abstract
In this study, two different types of ion exchange membranes are used to investigate the tendency of membrane fouling with respect to surface roughness and hydrophilicity. Commercially available membranes reinforced by electrospun nanofiber have rough and hydrophilic surfaces, and lab-made pore-filling membranes exhibit a smooth and hydrophobic surface. Three different organic surfactants (i.e., cationic, anionic and non-ionic surfactants) are chosen as foulants with similar molecular weights. It is confirmed that membrane fouling by electrical attraction mainly occurs, in which anionic and cationic foulants influence anion and cation exchange membranes, respectively. Thus, less fouling is obtained on both membranes for the non-charged foulant. The membranes with a rough surface show a higher fouling tendency than those with a smooth surface in the short-term continuous fouling tests. However, during the cyclic operations of fouling and mitigation of the commercially available membranes, the irregularities of a rough membrane surface cause a rapid increase in electrical resistance from the beginning of fouling due to excessive adsorption on the surface, but the fouling is easily mitigated due to the hydrophilic surface. On the other hand, the membranes with a smooth surface show alleviated fouling from the beginning of fouling, but the irreversible fouling occurs as foulants accumulate on the hydrophobic surface which causes membrane fouling to be favorable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.