Abstract
AbstractPollen malformations have been proposed as a paleoenvironmental stress proxy. However, the frequency and variability of pollen malformations under near-optimal conditions and environmental stress, as well as their developmental origins, remain unclear. To bridge these gaps, we compared pollen malformation frequencies and assemblages of 14 extant conifer genera of Pinaceae and Podocarpaceae producing saccate (winged) grains grown under near-optimal conditions. These baseline pollen yields were compared with those produced by Pinus mugo ‘Columnaris’ cultured under an abiotic stress—three experimentally heightened ultraviolet-B radiation (UV-B) regimes proposed for the end-Permian crisis. We additionally reviewed previous cytological literature of abnormal microsporogenesis in conifers. Under near-optimal conditions, malformations comprise <3% of pollen yields in 12 out of 13 bisaccate genera and >10% of yields in the naturally trisaccate Dacrycarpus dacrydioides. We detected no phylogenetic pattern in malformation assemblages of the baseline comparisons. UV-B–irradiated P. mugo produced significantly higher malformation frequencies and different assemblage compositions when compared with baseline bisaccate lineages. We propose that pollen malformations originate during the meiotic and tetrad stages of microsporogenesis and present a framework for the ontogeny of different malformation types seen in the fossil record. Malformations comprising >3% of bisaccate pollen yields can be used as a paleoenvironmental stress proxy, but rare, naturally trisaccate lineages are not suitable for such assessments. Furthermore, heightened UV-B not only increases pollen malformation production, but also alters the types of abnormalities trees produce. Different environmental stresses may therefore leave behind distinct fingerprints in the fossil record.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.