Abstract

Greenland glacial ice contains a fossil record of volcanic emissions transported in the stratosphere. C. V. Hammer, H. B. Clausen and W. Dansgaard (Nature, 288, 230, 1980) and M. W. Herron (Journal of Geophysical Research, 87, 3052, 1982) noted peaks of relatively high acidity in the Greenland glacial stratigraphic record that are assumed to be due to precipitation of sulfuric acid aerosols after major volcanic eruptions. R. B. Stothers and M. R. Rampino of the Goddard Institute for Space Studies in New York recently did a search of historical records and found an unexpected correlation of European volcano activity in the period 1500 B.C. to A.D. 1500 with dated acid maxima in Greenland ice (Science, 222, 411–412, 1983).Stothers and Rampino's soon‐to‐be‐reported search (Journal of Geophysical Research, in press) included examination of “about one quarter of a million pages of modern English test” (Science). In their analysis they took into account the statistical uncertainty of the icecore dates and the time lags that would be expected to delay the arrival of acid rain from distant European volcano sources. Of course the problem of the analysis is that whereas there are extensive records of European volcanos, there is precious little information on volcano activity that must have occurred during the same period in the western Pacific and in the western hemisphere. Beginning with the volcano in Thera, Greece, set at about 1450 B.C. (the volcano date having been determined from “archeology and legend”) and its Greenland ice acid peak date set at about 1390 B.C. (± 50, by radiocarbon methods), Stothers and Rampino correlate historical data through Vesuvius (217–216 B.C), Etna (44 B.C.), and others. There seems to be an acid peak to correlate in each instance in the data of Hammer et al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call