Abstract
Abstract Modern-day periodic climate pattern variations related to solar activity are well known. High-resolution records such as varves, ice cores, and tree-ring sequences are commonly used for reconstructing climatic variations in the younger geological history. For the first time we apply dendrochronological methods to Paleozoic trees in order to recognize annual variations. Large woody tree trunks from the early Permian Fossil Forest of Chemnitz, southeast Germany, show a regular cyclicity in tree-ring formation. The mean ring curve reveals a 10.62 yr cyclicity, the duration of which is almost identical to the modern 11 yr solar cycle. Therefore, we speculate and further discuss that, like today, sunspot activity caused fluctuations of cosmic radiation input to the atmosphere, affecting cloud formation and annual rates of precipitation, which are reflected in the tree-ring archive. This is the earliest record of sunspot cyclicity and simultaneously demonstrates its long-term stable periodicity for at least 300 m.y.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.