Abstract

The development of adaptive distributed systems is complex. Due to a large amount of interdependencies and feedback loops between network nodes and software components, distributed systems respond nonlinearly to changes in the environment and system adaptations. Although Event Condition Action (ECA) rules allow a crisp definition of the adaptive behavior and a loose coupling with the actual system implementation, defining concrete rules is nontrivial. It requires specifying the events and conditions which trigger adaptations, as well as the selection of appropriate actions leading to suitable new configurations. In this paper, we present the idea of Fossa, an ECA framework for adaptive distributed systems. Following a methodology that separates the adaptation logic from the actual application implementation, we propose learning ECA rules by automatically executing a multitude of tests. Rule sets are generated by algorithms such as genetic programming, and the results are evaluated using a utility function provided by the developer. Fossa therefore provides an automated offline learner that derives suitable ECA rules for a given utility function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.