Abstract

This study investigated resistance genes corresponding to the fosfomycin resistance phenotype in clinical isolate Providencia rettgeri W986, as well as characterizing the enzymatic activity of FosA11 and the genetic environment. Antimicrobial susceptibility testing was performed using the agar microdilution method based on the Clinical and Laboratory Standards Institute guidelines. The whole genomic sequence of Providencia rettgeri W986 was obtained using Illumina sequencing and the PacBio platform. The fosA-11 gene was amplified by PCR and cloned into the pUCP20 vector. The recombinant strain pCold1-fosA11-BL21 was expressed to extract the target protein, and absorbance photometry was applied for enzymatic parameter determination. Minimal inhibitory concentration (MIC) tests showed that W986 conferred fosfomycin resistance and was inhibited by phosphonoformate, thereby indicating the presence of a FosA protein. A novel resistance gene designated as fosA11 was identified by whole-genome sequencing and bioinformatics analysis, and it shared 54.41%-64.23% amino acid identity with known FosA proteins. Cloning fosA11 into Escherichia coli obtained a significant increase (32-fold) in the MIC with fosfomycin. Determination of the enzyme kinetics showed that FosA11 had a high catalytic effect on fosfomycin, with Km = 18 ± 4 and Kcat = 56.1 ± 3.2. We also found that fosA11 was located on the chromosome, but the difference in the GC content between the chromosome and fosA11 was dubious, and thus further investigation is required. In this study, we identified and characterized a novel fosfomycin inactivation enzyme called FosA11. The origin and prevalence of the fosA11 gene in other bacteria require further investigation.IMPORTANCEFosfomycin is an effective antimicrobial agent against Enterobacterales strains. However, the resistance rate of fosfomycin is increasing year by year. Therefore, it is necessary to study the deep molecular mechanism of bacterial resistance to fosfomycin. We identified a novel chromosomal fosfomycin glutathione S-transferase, FosA11 from Providencia rettgeri, which shares a very low identity (54.41%-64.23%) with the previously known FosA and exhibits highly efficient catalytic ability against fosfomycin. Analysis of the genetic context and origin of fosA11 displays that the gene and its surrounding environments are widely conserved in Providencia and no mobile elements are discovered, implying that FosA11 may be broadly important in the natural resistance to fosfomycin of Providencia species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call