Abstract
Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7‐days‐old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell‐sheet and a three‐dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos‐overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock‐down gave opposite results. In situ rat tendon repair experiments found more normal tendon‐like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos‐overexpressed TSPCs derived nonscaffold engineering tendon (cell‐sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno‐lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration. Stem Cells Translational Medicine 2017;6:2009–2019
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.