Abstract

Neural activity, as measured immunohistochemically by the presence of Fos protein, was determined in the lamina terminalis, a thin strip of tissue forming the anterior wall of the third brain ventricle, after adrenalectomy. Several weeks after surgery, the adrenalectomized rats were maintained with access to water and a low sodium diet for five days. In addition, hypertonic (0.5 M) NaCl solution was available for the entire five-day period (sodium available) or only during the first four days (sodium unavailable). The number of neurons expressing Fos, determined at the end of the fifth day, was increased in the adrenalectomized rats with or without NaCl solution to drink. Fos activity in the median preoptic nucleus was increased only in adrenalectomized rats without access to NaCl solution. Treatment of adrenalectomized rats with the sodium-retaining mineralocorticoid hormone, deoxycorticosterone, at the end of the fourth day, decreased Fos expression in the subfornical organ and the organum vasculosum of the lamina terminalis when NaCl solution was available but not when the NaCl solution was unavailable. In the adrenalectomized rats with NaCl solution available, mineralocorticoid treatment decreased both urinary sodium excretion and daily sodium intake. Brain nuclei in the lamina terminalis also became activated in intact rats made sodium deplete by treatment with the diuretic, furosemide. Relative to sodium-deplete intact rats, however, sodium-deplete adrenalectomized rats had a greater number of neurons expressing Fos in the organum vasculosum. Treatment of sodium-deplete rats, adrenalectomized or intact, with the angiotensin II-type 1 receptor antagonist, ZD7155, decreased sodium intake and Fos expression in the subfornical organ but not in the organum vasculosum of the lamina terminalis or median preoptic nucleus. In conclusion, the results demonstrated that activation of the brain nuclei located in the lamina terminalis of adrenalectomized rats was primarily related to sodium deficit and not to the absence of the mineralocorticoid hormones, although the adrenal hormones may have a role in limiting the activation of organum vasculosum of the lamina terminalis during sodium depletion. Furthermore, the results obtained with the administration of the angiotensin receptor antagonist are consistent with the proposal that sodium appetite of the sodium-deplete rat, adrenalectomized or intact, is mediated by circulating angiotensin II acting in the subfornical organ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call