Abstract

Long-term continuous monitoring (LTCM) of water quality can bring far-reaching influences on water ecosystems by providing spatiotemporal data sets of diverse parameters and enabling operation of water and wastewater treatment processes in an energy-saving and cost-effective manner. However, current water monitoring technologies are deficient for long-term accuracy in data collection and processing capability. Inadequate LTCM data impedes water quality assessment and hinders the stakeholders and decision makers from foreseeing emerging problems and executing efficient control methodologies. To tackle this challenge, this review provides a forward-looking roadmap highlighting vital innovations toward LTCM, and elaborates on the impacts of LTCM through a three-hierarchy perspective: data, parameters, and systems. First, we demonstrate the critical needs and challenges of LTCM in natural resource water, drinking water, and wastewater systems, and differentiate LTCM from existing short-term and discrete monitoring techniques. We then elucidate three steps to achieve LTCM in water systems, consisting of data acquisition (water sensors), data processing (machine learning algorithms), and data application (with modeling and process control as two examples). Finally, we explore future opportunities of LTCM in four key domains, water, energy, sensing, and data, and underscore strategies to transfer scientific discoveries to general end-users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.