Abstract

We obtain an existence and uniqueness theorem for fully coupled forward–backward SDEs (FBSDEs) with jumps via the classical solution to the associated quasilinear parabolic partial integro-differential equation (PIDE), and provide the explicit form of the FBSDE solution. Moreover, we embed the associated PIDE into a suitable class of non-local quasilinear parabolic PDEs which allows us to extend the methodology of Ladyzhenskaya et al. (1968) to non-local PDEs of this class. Namely, we obtain the existence and uniqueness of a classical solution to both the Cauchy problem and the initial–boundary value problem for non-local quasilinear parabolic second-order PDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.