Abstract
We deal with monotone inclusion problems of the form 0 ∈ A x + D x + N C (x) in real Hilbert spaces, where A is a maximally monotone operator, D a cocoercive operator and C the nonempty set of zeros of another cocoercive operator. We propose a forward-backward penalty algorithm for solving this problem which extends the one proposed by Attouch et al. (SIAM J. Optim. 21(4): 1251-1274, 2011). The condition which guarantees the weak ergodic convergence of the sequence of iterates generated by the proposed scheme is formulated by means of the Fitzpatrick function associated to the maximally monotone operator that describes the set C. In the second part we introduce a forward-backward-forward algorithm for monotone inclusion problems having the same structure, but this time by replacing the cocoercivity hypotheses with Lipschitz continuity conditions. The latter penalty type algorithm opens the gate to handle monotone inclusion problems with more complicated structures, for instance, involving compositions of maximally monotone operators with linear continuous ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.