Abstract

Roll coating is distinguished by the use of one or more gaps between rotating cylinders to meter and apply a liquid layer to a substrate. Except at low speed, the two-dimensional film splitting flow that occurs in forward roll coating is unstable; a three-dimensional steady flow sets in, resulting in more or less regular stripes in the machine direction. For Newtonian liquids, the stability of the two-dimensional flow is determined by the competition of capillary and viscous forces: the onset of meniscus nonuniformity is marked by a critical value of the capillary number. Although most of the liquids coated industrially are non-Newtonian polymeric solutions and dispersions, most of the theoretical analyses of film splitting flows relied on the Newtonian model. Non-Newtonian behavior can drastically change the nature of the flow near the free surface; when minute amounts of flexible polymer are present, the onset of the three-dimensional instability occurs at much lower speeds than in the Newtonian case. Forward roll coating flow is analyzed here with two differential constitutive models, the Oldroyd-B and the FENE-P equations. The results show that the elastic stresses change the flow near the film splitting meniscus by reducing and eventually eliminating the recirculation present at low capillary number. When the recirculation disappears, the difference of the tangential and normal stresses (i.e., the hoop stress) at the free surface becomes positive and grows dramatically with fluid elasticity, which explains how viscoelasticity destabilizes the flow in terms of the analysis of Graham [M.D. Graham, Interfacial hoop stress and instability of viscoelastic free surface flows, Phys. Fluids 15 (2003) 1702–1710].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.