Abstract

In this paper, we provide a splitting method for finding a zero of the sum of a maximally monotone operator, a Lipschitzian monotone operator, and a normal cone to a closed vector subspace of a real Hilbert space. The problem is characterised by a simpler monotone inclusion involving only two operators: the partial inverse of the maximally monotone operator with respect to the vector subspace and a suitable Lipschitzian monotone operator. By applying the Tseng's method in this context, we obtain a fully split algorithm that exploits the whole structure of the original problem and generalises partial inverse and Tseng's methods. Connections with other methods available in the literature are provided, and the flexibility of our setting is illustrated via applications to some inclusions involving $$m$$m maximally monotone operators, to primal-dual composite monotone inclusions, and to zero-sum games.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.