Abstract

A thin-film composite (TFC) FO membrane was used to study the fouling characteristics of effluent organic matter (EfOM) fractions in treated wastewater effluent represented by alginate, bovine serum albumin, humic acid and octanoic acid. These model foulants were chosen to represent carbohydrates, proteins, humic substances and fatty acids. Inter foulant interactions and their influence on membrane flux loss was established by running series of fouling tests with feed solutions containing mixtures of model foulants. The obtained results demonstrated that under our experimental conditions humic acid (HA) and octanoic acid (OA) had no significant role on permeate flux loss during wastewater treatment over short periods. However, alginate and bovine serum albumin (BSA) and their mixtures caused significant total flux loss, through alginate-calcium complexation that led to the formation of a resistant gel layer on the membrane surface. Protein fouling was mainly attributed to multiple layer adsorption onto the polyamide membrane surface. Mixing alginate with BSA saw a further decline in permeate flux, worse than that caused individually by either of the foulants, and gives an indication of the synergistic effect between the two foulants. There were favourable inter-foulant interactions between the carbohydrates and the proteins that promoted the formation of hybrid aggregates that were deposited on the membrane surface and enhanced flux loss. The additional presence of humic acid to the mixture of BSA and alginate further aggravated membrane fouling. Polysaccharides and proteins were found to be the most dominant foulants during wastewater reclamation. The extent of interactions between the organic foulants had an effect on the fouling layer structure and its role in permeate flux loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.