Abstract
The forward $ \omega $-limit set $ \omega_{\mathcal{B}} $ of a nonautonomous dynamical system $ \varphi $ with a positively invariant absorbing family $ \mathcal{B} $ $ = $ $ \{ B(t), t \in \mathbb{R}\} $ of closed and bounded subsets of a Banach space $ X $ which is asymptotically compact is shown to be asymptotically positive invariant in general and asymptotic negative invariant if $ \varphi $ is also strongly asymptotically compact and eventually continuous in its initial value uniformly on bounded time sets independently of the initial time. In addition, a necessary and sufficient condition for a $ \varphi $-invariant family $ \mathcal{A} $ $ = $ $ \left\{A(t), t \in \mathbb{R}\right\} $ in $ \mathcal{B} $ of nonempty compact subsets of $ X $ to be a forward attractor is generalised to this context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.