Abstract
A model of the interaction of sound from a spreading subsonic jet with a four-panel assembly is studied numerically in two dimensions. The effect of forward motion of the jet is allowed for by considering a uniform flowfield superimposed on a mean jet exit profile. The jet is initially excited by a pulselike source inserted into the flow field. The pulse triggers instabilities associated with the inviscid instability of the jet shear layer. These instabilities generate sound, which in turn serves to excite the panels. The far-field acoustic radiation, the panel response, and the sound radiated from the panels are all computed and compared with computations with a static jet. The results demonstrate that for a jet in forward motion there is a reduction in sound in downstream directions and an increase in sound in upstream directions, in agreement with experiments. Furthermore, the panel response and radiation for a jet in forward motion exhibit a downstream attenuation as compared with the static case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.