Abstract

We present a forward-modeling framework for estimating galaxy redshift distributions from photometric surveys. Our forward model is composed of: a detailed population model describing the intrinsic distribution of the physical characteristics of galaxies, encoding galaxy evolution physics; a stellar population synthesis model connecting the physical properties of galaxies to their photometry; a data model characterizing the observation and calibration processes for a given survey; and explicit treatment of selection cuts, both into the main analysis sample and for the subsequent sorting into tomographic redshift bins. This approach has the appeal that it does not rely on spectroscopic calibration data, provides explicit control over modeling assumptions and builds a direct bridge between photo-z inference and galaxy evolution physics. In addition to redshift distributions, forward modeling provides a framework for drawing robust inferences about the statistical properties of the galaxy population more generally. We demonstrate the utility of forward modeling by estimating the redshift distributions for the Galaxy And Mass Assembly (GAMA) survey and the Vimos VLT Deep Survey (VVDS), validating against their spectroscopic redshifts. Our baseline model is able to predict tomographic redshift distributions for GAMA and VVDS with respective biases of Δz ≲ 0.003 and Δz ≃ 0.01 on the mean redshift—comfortably accurate enough for Stage III cosmological surveys—without any hyperparameter tuning (i.e., prior to doing any fitting to those data). We anticipate that with additional hyperparameter fitting and modeling improvements, forward modeling will provide a path to accurate redshift distribution inference for Stage IV surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.