Abstract

Although numerous sophisticated nonlinear control algorithms exist in literature, it is still state of the art to use simple linear joint controllers in industrial robotic systems. Most nonlinear concepts are based on a more or less accurate inverse model of the robot. In this paper a forward-model-based control system, the so-called Model Following Control (MFC), for robot manipulators is presented. Its theoretical basics and its concept are explained. The quality and the applicability of the MFC control concept has been analyzed in many experiments. The MFC system is compared with classical linear controllers and nonlinear feedforward controllers with respect to robustness. Qualitative as well as quantitative results are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.