Abstract

With the rapid and growing spread of automotive radar systems in modern vehicles, the problem of their mutual interference is becoming a major safety concern. This paper considers the use of receive-only sensors onboard the vehicles, which exploit an external illumination source to provide automotive radar functionalities. The passive radar paradigm would solve the problem of mutual interference, allowing different systems to share the same transmitted signal. A preliminary analysis of the feasibility of this concept is carried out, exploiting real-world transmitters of opportunity. The potentialities offered by both satellite and ground-based illuminators are investigated and the expected performance is evaluated in terms of achievable coverage and spatial resolution. Aiming to enable a practical implementation of the proposed concept, an appropriate signal processing scheme is proposed to obtain maps of the observed scene. A Doppler beam sharpening approach is adopted to discriminate and localize stationary scatterers in azimuth based on the differences in their relative Doppler shift. The problem of left/right ambiguity arising from the forward-looking geometry is tackled by exploiting an array of few antenna elements on receive. Specifically, an ambiguity removal approach is proposed, based on digital beam pattern adaptation, designed to maximise the response in the desired direction and suppress unwanted echoes from the corresponding ambiguous one. The effectiveness of this approach is further improved by cascading an apodization technique that prevents the undesirable increase in the noise level. Moreover, some criteria are introduced for the design of the antenna layout, resorting to non-uniform linear array configurations. The proposed system is tested against a simulated environment, where the multi-channel signal processing, combined with a properly designed array layout, is shown to provide an unambiguous mapping of the observed scene over wide angular sectors, even operating with few antenna elements on receive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.