Abstract
This article examines an optimization method to solve the forward kinematics problem (FKP) applied to parallel manipulators. Based on Genetic Algorithms (GA), a non-linear equation system solving problem is converted into an optimization one. The majority of truly parallel manipulators can be modeled by the 6-6 which is an hexapod constituted by a fixed base and a mobile platform attached to six kinematics chains with linear (prismatic) actuators located between two ball joints. Parallel manipulator kinematics are formulated using the explicit Inverse Kinematics Model (IKM). The position based equation system is implemented. In order to implement GA, the objective function is formulated specifically for the FKP using one squared error performance criteria applied on the leg lengths augmented by three platform joint distances. The proposed approach implements an elitist selection process where a new mutation operator for Real-Coded GA is analyzed. These experiments are the first to converge towards several exact solutions on a general Gough platform manipulator with fast convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.