Abstract

This article deals with forward kinematics (FK) mapping of a parallel robot, especially designed for ankle joint rehabilitation treatments. Parallel robots exhibit highly coupled non-linear motions hence conventionally a unique closed form solution of their FK cannot be obtained. However, since FK is a key module in closed loop position and force control, its accurate and fast solution is indispensable. To solve the FK problem, a modified fuzzy inference system (FIS) is proposed in this paper for the first time which is time efficient and becomes very accurate when its parameters are optimized. In the proposed work, FIS has been optimized using three approaches namely: gradient descent (GD), genetic algorithm (GA) and modified genetic algorithm (MGA). The FIS, optimized by MGA has been found to be more accurate than the GD and GA optimized FIS. Performance of the MGA based fuzzy system has been found better both in terms of accuracy and computation time, when compared with Newton–Raphson iterative method and other fuzzy and neural approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.